
 [image: websitelogo2012_small]

 Tilman Bremer

 Panoramic Photography Revealed

 Table of Contents

 Introduction

 Part I: Hardware for Panoramic Photography, DIY

 Panohead Version 1

 Panohead Version 2

 Panohead Version 3

 Conclusion part I

 Part II: Creating Perfect Panoramas, The Open Source Way

 The Toolchain as Abstract

 The Toolchain in Detail

 1. Hugin

 2. Panini

 3. SaladoConverter

 4. Gimp

 1. Clone stamping

 2. Merging a handheld shot

 3. Adding a logo/watermark

 5. SaladoConverter

 Software that didn’t make it to the team, but is still worth mentioning

 DevalVR Player

 PTLens

 Conclusion part II

 Part III: Creating Perfect Virtual Tours, The Open Source Way

 Basics

 Hello World! The first virtual panorama within 5 minutes.

 Hooray, the first pano is working! Now let’s get serious. Let’s learn SaladoPlayer

 XML

 The structure

 Adding Panoramas

 Connecting Panorams via Hotspots

 Adding Modules

 Example: ViewFinder

 Example: BackgroundMusic

 Example: BackgroundMusic (Again)

 Credits

 Part IV: Appendix / Frequently Asked Questions

 Why do I get an error when opening my virtual tour from my local computer instead of a webserver?

 The SaladoPlayer doesn’t fill the browser window completely, there is always a small black border visible. Is it possible to get rid of this border?

 How do I use SaladoPlayer in combination with PanoPress?

 Introduction

 Panoramic photography is a very specialized field of photography and in contrast to, let’s say portraits and nature photography, it’s not the first thing you get started with when getting your first camera. A lot of photographers and software companies are involved in panoramic photography and make a living out of it. That’s fair and my intention is not to set those people out on the street. But sometimes people want you to think panoramic photography is to be left to “the professionals” and that you shouldn’t even get started before you

 [image: panokopf_eyecatcher]

 	buy a panoramic tripod head for a couple of hundred bucks,

 	buy various editing and stitching software for even more couples of hundred bucks and

 	buy a Flash-based software to present your work on your website.

 For me, there is definitely to much buying involved here! This series of articles tries to highlight every aspect of panoramic photography, always focused on keeping it low-cost and down to earth.

 Part I: Hardware for Panoramic Photography, DIY

 There are several companies out there selling very good, but also very expensive panoramic tripod heads. Those are mostly of very good quality and I guess the price is not really a big deal for professionals, their equipment quite often is about 20 or 50 times the value. You can find a pretty complete list of manufactors on the panotools website. But if you like to get started with panoramic photography as non-professional you are probably not convinced about investing 300€ before you even know if panoramic photography is the thing for you. For me, it was the same. So I searched for do-it-yourself tutorials of panoramic heads and I indeed found a lot.

 But, most of them were focused on the regular guy without a lot of tools at hand and used very basic materials from the hardware store as well as pretty easy assembly techniques. The results were fair for the effort, but they have some problems competing with the commercial solutions. Sometimes they even need additional commercial photography equipment, like air levels, exchangeable mounting plates or similar. I’ve seen tutorials where the result was about 100€, which in my opinion, has left the low-cost sector.

 Various (quite good) tutorials can be found here (in German): http://www.heiliger-net.de/panphoto/hardware.htm (Simply scroll down to the bottom of the page)

 Other tutorials in English might be interesting for you:

 	http://www.stockholmviews.com/diyphotogear/pano_head.html “El Cheapo”

 	http://www.mejiatryti.com/Panoramas/diyqtvrhead.html Why not try wood?

 On the other hand, there are self made panoramic heads out there so professional, it scared me a little bit. One example is the one made by Dr. Sean Parkin, which looks as professional as the ones you can buy:

 	http://www.chem.uky.edu/xray/people/parkin/panohead/panohead.html

 After looking through several of the tutorials I decided to construct my own. I have access to my fathers workshop, who is a locksmith, so I was able to manufacture my panohead a little bit more precise and sturdy than others. In total I made 3 versions of panoheads so far, because my needs changed over time and I had some improvements that came to me while using my panoheads.

 Please notice that the manufacturing of the following panoheads requires welding (2 and 3), drilling and edging (all of them). If you have doubts about doing that or if you don’t have the possibility to do such works safely, please consider using one of the more simple tutorials linked above or have it done by a professional.

 Panohead Version 1

 [image: thumbs_panokopf1_3][image: thumbs_panokopf1_2][image: thumbs_panokopf1_1][image: thumbs_panokopf1_foto1][image: thumbs_panokopf1_foto2][image: thumbs_panokopf1_foto3][image: thumbs_panokopf1_foto4]

 Download all CAD Drawings of Panohead Version 1 as PDF

 Download all CAD Drawings of Panohead Version 1 as prt and asm for Pro/ENGINEER

 Despite of the shown parts that need to be manufactured, you need a screw to connect the stand and the arm of the panohead. The first drawing is the first version that was changed right while being made. As you see on the pictures and the drawing of the arm (or on the drawings of panohead 2 and 3) I used a countersunk screw, because the other way round the screw head would make it impossible to mount the camera. The screw is a M8x30 countersunk screw tightened by two M8 nuts that are used to achieve a nut lock. And of course you shouldn’t forget to place a washer underneath! I used that mounting for all of my panoheads, as you will see later.

 You will then need a way to mount the panohead onto your tripod and the camera onto the panohead. In my case, this was an easy task. As tripod I use a Sony VCT 20A. It’s pretty easy to remove the knurled-head screw that is intentionally used for the camera and use it to mount the camera onto the panohead. The resulting empty drill hole can be easily used to mount the panohead with a M6x40 screw onto the tripod. I used M6, because it’s a screw thread which is in wide use and easy to get (at least in Europe) and fits quite good in a drill hole intentionally made for a 1/4″ screw. You might need a different length then 40mm, depending on your tripod. Also, this won’t work if your tripod is equipped with an exchangeable mounting plate. If that’s the case I kindly ask you to search for inspiration in one of the many tutorials out there. It’s not that different after all.

 On the pictures you will see the arm to be slightly different. The one with the slot hole is my first version. One fits all, thus it can be used with every camera and every lens and it is perfect to define the NPP (No parallax point). You can see a drawing of it within the drawings of the second panohead. Once you defined your NPP I advise you to make yourself a new arm, tailor-made for your camera/lens combination. It’s such an easy part to build, and it’s a lot easier for you in the field, because you never need to think about where the correct position is. You don’t even need to make a mark.

 I designed, sketched and built that head in October 2010. It was my first construction and it works satisfactorily so far. Even though its made of pure steel, the weight is still in a tolerable range for me. It easily holds a fully loaded DSLR without getting wobbly or anything similar. But as you already guess, there are some cons that made me built another one. Those are:

 	With the knurled-head screw that fixes the camera to the arm, it’s not possible to let the camera point straight up (tilt = 90°) because the screw head will touch the stand at something like 70° tilt. This is not a problem when using a fisheye lens but can be in some cases.

 	I designed the slot hole on the bottom of the stand a little short, because I thought it just needed to fit my camera and that would be it for the next years. This might be true as long as you don’t get yourself a battery grip. I get one myself and voilà, a new panohead was needed.

 Panohead Version 2

 [image: thumbs_panokopf2_1][image: thumbs_panokopf2_2][image: thumbs_panokopf2_3][image: thumbs_panokopf2_4][image: thumbs_panokopf2_5][image: thumbs_panokopf2_foto1][image: thumbs_panokopf2_foto2][image: thumbs_panokopf2_foto3][image: thumbs_panokopf2_foto4]

 Download all CAD Drawings of Panohead Version 2 as PDF

 Download all CAD Drawings of Panohead Version 2 as prt and asm for Pro/ENGINEER

 The basic idea of this head is actually not different to version 1. A few improvements have been made to fit my needs:

 	A spacer block sets the arm 30mm away from the stand and makes it possible to rotate the camera 360° around. The knurled-head screw is no longer keeping me from pointing the camera straight up.

 	The slot hole in the stand was lengthened by about 60mm, to make my camera fit the panohead even with the battery grip. By the way, it’s a Canon EOS 550D / Rebel T2i / Kiss X4 we are talking about.

 	The stand has been designed to be sturdier. The bottom flat steel of the stand is now 30×6 instead of 25×6, the erect part is made from 20×5 flat steel instead of 25×6. Because the erect part is designed from weaker material, it has been reinforced by the same time. The support from the backside increases the stiffness and makes the panohead now support really heavy gear. Now we are talking a DSLR with mounted (and fully loaded) battery grip and a really heavy zoom lens. No problem at all.

 Additionally, there is an indicator made from acrylic glass mounted on the side to show the tilt in steps of 15°. It was originally made for the first version of the panohead but I took it, because this much precision is usually only needed when using normal or telephoto lenses which is now the task of panohead 2.

 This panohead is capable of pretty much anything. It can hold a DSLR with or without battery grip, with a fisheye, a normal lens and even heavy telephoto lenses. When I go out on a pano-tour it’s the tool I have with me. An If I plan to do a gigapixel panorama, I now got the right tool.

 But… there is again a “but”. Sometimes you are in the fields and you just want to travel light. Maybe making panoramas is not even your intention, then the second panohead is definitely too much to carry around. First, the weight is about 1100g with all necessary screws. And second, the head in combination with the tripod is nothing you can easily fit in your backpack neither. And there is another situation where this kind of panohead is just not the first choice: If you have not enough space to set up your tripod, if there is a crowd or simply if you need to be fast set up and ready. That’s why I designed the third panohead to be used with monopods.

 Panohead Version 3

 [image: thumbs_panokopf3_1][image: thumbs_panokopf3_2][image: thumbs_panokopf3_3][image: thumbs_panokopf3_4][image: thumbs_panokopf3_5][image: thumbs_panokopf3_foto1][image: thumbs_panokopf3_foto2][image: thumbs_panokopf3_foto3][image: thumbs_panokopf_foto4]

 Download all CAD Drawings of Panohead Version 3 as PDF

 Download all CAD Drawings of Panohead Version 3 as prt and asm for Pro/ENGINEER

 This panohead is especially designed for a combination of a specific monopod, a specific camera and a specific lens. In this case, a GIOTTOS MML 3290B, a Canon EOS 550D and a Samyang 8mm f/3,5, a lens which is also known under other pseudonyms, like Walimex, Falcon, Bower or Polar. Mine is a Falcon.

 The GIOTTOS MML 3290B monopod was not chosen by accident, but because of a very helpful feature. When I started to think about a panohead for a monopod, I wasn’t sure how I would mount the head later on. Most monopods have a 3/8″ thread or sometimes both, a 3/8″ and a 1/4″ thread for mounting monopod heads. Usually I would say “let’s tap the needed thread in a solid steel plate and use it as base for the panohead!”. What most people can’t do because of the tools you need is normally no problem for me. But not in this case. No one in the right mind has a 3/8″ screw tap in Germany, me included, no offense. But the engineers at GIOTTOS came to help me: By placing three M6 threads in the mounting plate they set up the perfect basis for me to build on. (Pictures coming soon) Intentionally, they were used as a way to secure a normal head by tightening three grub screws from underneath. I simply removed the grub screws and replaced them with three M6x16 cylinder-head screws.

 This specific panohead only fits one specific type of camera. As you can see on the last drawing, the height of the center of the lens is in my case 38mm. I only added the thickness of the arm because that way it’s easier to check if everything is accurate wrought in the workshop, so: 38mm + 6mm = 44mm. The last drawing in fact is just there to help checking and assembling the head in the workshop.

 As you should have noticed already, the third panohead version is a “slanted” one. This term is commonly used in panoramic photography. By using a “slanted” panoramic head, it’s possible to shoot only one row of pictures with the result of very little space left to manually work on (mostly on the ground) and that, even with cameras with cropped sensor (like mine). Additionally, the camera can be rotated 360° around the slanted axis, which would not be possible in such a small design by using a vertically erect stand like in version 1 and 2. That way, it was possible to keep the weight at around 500g including screws.

 Conclusion part I

 There are a lot of good panoramic heads out there, here are some more self made ones. I hope this article helps if you think about making your own panohead and if you like to go a little bit further than assembling parts from the hardware store. I am aware that some measures only fit in my case, but maybe someone can adjust them to his or her needs.

 Please feel free to comment, tell me if you like the constructions or if you have ideas to improve it!

 And if you make your own panohead based on my drawings, please let me know, it would be great to hear that.

 Edit: I got a nice response from Ricardo Moura, a photographer from Recife, Brazil who built a panohead based on my second construction. He used slightly lighter shapes and stainless steel, also, he used nylon instead of steel for the spacer to achieve smoother moves. Have a look at his construction:

 [image: thumbs_image001][image: thumbs_image002][image: thumbs_image003]

 Part II: Creating Perfect Panoramas, The Open Source Way

 [image: kasse_tag_klein-600x273]

 The Toolchain as Abstract

 First of all, I will give you the complete toolchain for creating perfect 360°x180° panoramas exclusively with free and open source software. Of course this also works for panoramas with a smaller FOV (Field of View) but I will show the workflow for a full sphere because you are simply in the most trouble doing so. By the way: If you don’t need special software to present your pictures and if you don’t have to stitch a nadir picture you are very likely to be done after step 1, using hugin.

 I made this list for myself some time ago simply to not get confused by too many different tools in use. At first, this list also contained some commercial software, but I quickly understood that there was no need for the almost “simple” tasks they had to do for me. So, this is now fully open source:

 - Software - What happens here - What you get

 - Hugin - Open Pictures, Settings & Stitch - Equirectangular Picture without correct Nadir
 - Panini - Open Equirectangular Picture, Look for Errors - If Errors Occur, Another Run in Hugin
 - SaldoConverter - Converting Equirectangular to Cube Sides - 6 Cube Sides in Tiff Format
 - Panini - Create "Mirroring Hemisphere" - Image to Patch Bottom Cube Side
 - Gimp - Editing Nadir and Zenith Cube Wall - Correct Bottom + Top Cube Side
 - Gimp - Adding Logo/Watermark to Bottom Cube Side - Correct Bottom Cube Side with Watermark/Logo
 - SaladoConverter - Converting 6 Cube Sides to DeepZoom Cubic - Correct DeepZoom Folder Strukture for SaladoPlayer

 To make you find the used software faster, I got the links collected up here:

 	Hugin

 	

 	http://hugin.sourceforge.net

 	Panini

 	

 	http://sourceforge.net/projects/pvqt/

 	SaladoPlayer/SaladoConverter

 	

 	http://panozona.com

 	Gimp

 	

 	http://www.gimp.org

 The Toolchain in Detail

 So, let’s get started! You went to the countryside and made some nice looking pictures? You would like to stitch them together to a panorama covering a full sphere? If you don’t know how to shoot pictures in a way that they fit for this purpose, this is not the tutorial for you. I will start right after that step. If you need some help with the basics of panoramic photography, the tutorials on panoguide.com might be helpful for you: http://www.panoguide.com/howto/.

 I will try to describe the steps as closely as possible to the workflow above, with the respective interaction you have to do, an overview about what you will get and how it will look after that step.

 1. Hugin

 We have our pictures right from the camera, without any work done to it. Whether you made your pictures with a fisheye or a normal lense matters when configuring hugin. After that, the workflow is perfectly the same. In my case, I shot 4 picture with -5° tilt, one tilted up by 90° and one down with -90°, all made with a 8mm fisheye lens.

 [image: thumbs_img_0382][image: thumbs_img_0389][image: thumbs_img_0379][image: thumbs_img_0376][image: thumbs_img_0372][image: thumbs_img_0368]

 I will try to keep the tutorial about hugin as short as possible at this point. There are a lot of very good tutorial about hugin out there and you should always watch out for them. Hugin is a powerful tool and the better you know how to handle it, the less problems you will have following a workflow like this. There are also a lot of special cases, like panoramic photography using HDR which are not part of this tutorial but requires some more skills in hugin. Because the focus here is set on the entire workflow, it features a kind of “standard” case of a spherical panorama. Still, as hugin is the central software of this workflow, it is not ignored.

 After loading the images in hugin, you need to provide information about your camera and lens so hugin can calculate the lens distortion and so on. It mostly is already given by the EXIF information and you don’t have to touch those settings (especially if you are e.g. working with a kit lens). I just select Circular Fisheye from the dropdown menu, tell hugin that I was using an 8mm lens and I am already done here. In most cases, you can now click on Align… and let hugin do the work. In my case, there is still one thing to do.

 [image: hugin_01-600x388]

 I set masks for all pictures, to let hugin ignore the black areas on my pictures. This can also be done by using the “crop” function but for whatever reason this never really worked for me. Masking works instead pretty good and so is my way to work this out. It’s possible to save the mask and reuse it in the next project. Also masking is a good way of preventing ghosts or people showing up multiple times and getting rid of visible parts of the panohead or similar in the picture.

 [image: hugin_02-600x388]

 After that, you can hit the Align… button in the hugin assistant and let the magic happen. Hugin will now try to find control points in all the overlapping areas and so, aligning all the images. This might take a while, with a reasonable fast computer and only a few pictures like in this case, it’s done in less than a minute. While doing this, you will get such a window:

 [image: hugin_03-600x388]

 I added the first 5 of 6 images to hugin, so the picture made by pointing the camera downwards without the tripod is not included. It’s impossible to remain the camera rotated around the No-Parallax-Point by holding it with an outstretched arm and there would be a lot of wrong control points in the panorama. Without using it, there will be an area at the bottom hugin has no image information about and thus it will keep it blank. This is no problem, I will use the picture left over to fill that whole later.

 After the aligning is done, hugin sometimes throws me an error, that there are two groups of pictures that are not connected. This happens when the picture that was shot upwards contains a lot of similar looking blue sky which makes it really hard for hugin to find control points. The first group of 4 or 5 pictures usually is one 360° look around and the other picture is only blue sky. If so, manual work is required and I have to add some manual control points and let hugin align all pictures again. Let me show you quickly how it’s done with a different example:

 [image: hugin_03-600x406][image: hugin_04-600x406][image: hugin_05-600x406]

 If you shoot a panorama indoors or with trees above yourself, you won’t get that error because hugin will have sufficient image information for stitching the picture pointed upwards. In the example I am presenting, this is the case. Thus, a very good result is achieved without manual correction and can be viewed right away with hugin’s built-in Fast Panorama preview.

 [image: hugin_041-600x388]

 There is still some tweaking possible (and often necessary) in this window, but I won’t go into detail here. Still, one very important thing needs to be done here and that is, centering the resulting panorama. This will later decide wich side of the cube is being refered to as “front”. So, centering brings us there:

 [image: hugin_051-600x388]

 Note the black area at the bottom of the panorama, this is the area that needs manual work to achieve a perfect nadir picture. Hugin normally tries to crop the area so that you have a rectangular picture with straight borders. This is certainly desired if you wish to use the picture “flat” e.g. in a header of a website or for printing. In our case, it’s not. First, the SaladoConverter and Panini both needs pictures with a width to height ratio of exactly 2:1 as input (because 360°x180° is of the very same ratio), cropping the image now will cause another unnecessary manual step. Second, we will work on the nadir picture nevertheless, so cropping just takes away already correct image information and is certainly no help here. You can now close the fast panorama preview window and go to the tab Stitcher to make the last settings before stitching. Click on Calculate optimal size to get the original resolution of the panorama, here it’s 12028 x 6014 pixels. If you had such a black border at the bottom, hugin will suggest a smaller cropping area below. Just set both setting to maximum size and nothing will be cropped.

 [image: hugin_061-600x388]

 Also, output format should be set to “TIFF” and compression to “None” as Panini is not good with TIFF compression methods and will cause problems when trying to open such files. After that, hit Stitch! and hugin will render the output file. This will look like this:

 [image: hugin_07-600x388]

 The result looks like this (resized version):

 [image: kasse_tag_hugin_klein-600x300]

 The next step is simple, and that is checking the result hugin produced.

 2. Panini

 Panini is a nice standalone panorama viewer I use for checking the results of hugin. It’s very hard to find errors or just to evaluate the output of a panorama stitcher by viewing the image in a normal viewer (like Irfanview). It looks distorted in the upper and lower area, although the lower area is mostly the one you would like to check for errors. To view your panorama with Panini, just drag the created equirectangular image into the window of Panini and you can instantly look around and see your result. If you find errors that are based on wrong set control points or ghosts that could have been prevented by proper masking, you should go back to hugin and try for a second time. If the result looks fine, the most susceptible areas should be inspected, the zenith and the nadir. Looking down brings us something likes this:

 [image: panini_01-600x389]

 The result is fine. You will harldy get a smaller footprint by using a tripod and the needed manual work is tolerable. Great, moving on to the next step. We need a way to work on zanith and nadir to make the result perfect. As you can’t work on the equirectangular picture that is made by hugin, you need to transform it to six sides of a cube. That is what the SaladoConverter is doing.

 3. SaladoConverter

 The SaladoConverter as well as the SaladoPlayer is a key software in this toolchain and they are both maintained by Marek Standio, who took over the PanoSalado project in 2010. It is a very specialized and well working piece of open source software and this tutorial aims on providing a good documentation about both applications to hopefully get more people to use it. Support for this project is a little low at the moment which is mainly caused by the fact that it is not well known in the community. I tried to support the development of SaladoPlayer with feedback and detailed bug reports in the last month and now, thanks to Marek Standio who is working his ass off for that project, it has become so advanced that it can almost compete with the leading commercial solutions.

 Usage of SaladoConverter is quite easy: Open the equirectangular picture, set an output path and select Equirectangular to cubic from the drop down menu. Let me give you one very useful hint here: If you haven’t done so already, you should give your panorama a short and easy name before you let SaladoConverter get into action. At this point it’s only renaming one file, but we will produce multiple files and whole folder structures with SaladoConverter over time and if you stay with the name hugin automatically chose (like IMG_0368-IMG_0382.tif) you will have that bulky name as prefix on all of your files later. It just makes configuration of SaladoPlayer much easier with a name like reception.tif, garden.tif or whatever you prefer.

 [image: saladoconverter_01-600x388]

 The result is a set of pictures, covering all six sides of a cube. The equirectangular picture made by hugin is in contrast to that a projection of a sphere, where every pixel is positioned orthogonal to the middle of the sphere. The big improvement now is, that a flat surface like the ground, is actually projected as a flat one. By that, it’s very convenient to work on the ground with a picture editing software. So, the result of SaladoConverter is as following:

 [image: saladoconverter_03-600x114]

 4. Gimp

 Next on the list is the gimp, a well known open source picture editing software. Gimp will help us do the final steps to achieve a perfect spherical panorama. First, there is the picture with the suffix _u, which stands for “up”. As I already noticed by viewing the panorama in Panini, the sky has a dark spot right at the zenith. This is a known error caused by enblend and enfuse (both algorithms used by hugin) but it’s not that bad, because this is fixed quite fast with gimp. After opening the image, you can use the healing tool to locate another part or the sky by ctrl-clicking it and then click on the spot to be healed. For that purpose I created myself a new brush in hugin, that fits my needs. Go to Windows > Dockable Dialogs > Brushes and click on the New Brush icon at the bottom. I made mine with a radius of 200px and a hardness of 0,88 so that you won’t see the hard edges of the brush when using it. It’s the same brush I will later use on the nadir picture.

 [image: gimp_01-600x441]

 That is the zenith cube before and after using gimp:

 [image: thumbs_kasse_tag_u][image: thumbs_kasse_tag_u2]

 Next is the bottom cube side, which has the suffix _d for “down”. This is usually a little bit more difficult to do. There are actually different ways to deal with the nadir, I will show you the three most common ones.

 1. Clone stamping

 It is the easiest way, but it’s only working if you have a regular and/or natural underground like sand, grass, mud or small stones. Equally formed concrete, wood or carpet can also work, a tiled floor will instead give you a big headache. I just take my newly created brush and use gimp’s clone tool. It works just as the healing tool: Ctrl-click on a place located near to the area you would like to fix, and simply stamp over it.

 [image: gimp_02-600x441]

 2. Merging a handheld shot

 This approach is a little bit more sophisticated, requires more skill and time but produces the best results. First of all, you need a handheld shot of the ground. Before you can use that image, you have to desfish it, to make the ground become flat like it already happened in the bottom cube side. There is actually more than one way to do so, one way is hugin: Load only the handheld shot into hugin, set the lens settings in the Assistant tab like we did at the beginning and go directly to the tab Stitcher. Set Projection to Rectlinear and Field of View to 90° horizontal as well as 90° vertical and hit Stich now…

 [image: hugin_08-600x440]

 The result is a rectangular shot with a flat surface of the ground, similar to the bottom cube side created earlier. The result might be not as well as the one PTLens is able to produce (mentioned later), but already more than sufficient for my needs here. At this point, I would like to thank and give credits to John Houghton for helping me figuring out this little trick!

 [image: hugin_09-600x600]

 A completely distortion free picture is not necessarily needed for this purpose. Gimp is also able to remove the distortion in a centered area of the picture large enough. As you are already working in gimp, open the picture, go to Filters > Distorts > Lens Distortion. You have to experiment with the settings here, best way to do so is by taking a shot of a tiled floor and play with the settings until the tiles are orientated in a perfect rectangular matrix. In my case, I just set main to -95. After that, the edges of the picture are now distorted in a different way, but as I am only interested in the middle part, this is sufficent for me.

 [image: gimp_03-600x440]

 However you defished your nadir shot, make a large circular selection and copy it to the bottom cube side you are going to fix. Choose the eraser tool and select the new created brush (recall: radius=200px, hardness=0,88) to erase your feet. Then you probably need to skale and rotate the inserted images to make it fit the underneath lying ground.

 [image: gimp_04-600x436]

 You can also lower the opacity of the eraser or create another brush with even softer edges, everything that helps the image merge with the background. Then, open the curves of the inserted image on right click > Colors > Curves and make it fully vanish. There are other ways to merge the handheld picture with the bottom cube side, but they are similar. The combination of color manipulation, soft edges and brushes with partial opacity will let you reach you goal. Of course you can also use the healing or clone tool after merging the two image to improve the result even more.

 [image: gimp_05-600x441]

 3. Adding a logo/watermark

 If you think this is to much effort for the nadir image, you can also let the tripod footprint stay untouched and simply place your logo or your watermark on top of it. A lot of photographers like to use a reversed little-planet view of the actual panorama what looks a little like a mirroring hemisphere laying on the ground. I will show you how to achieve this effect. Open your equirectangular panorama another time with Panini, go to Presets and set the camera mode to Super fish. Tilt up and zoom out, and you will get the desired effect. You can save a picture of the current view by clicking View > Save as… or simply by making a screenshot.

 [image: panini_02-600x389]

 Open the created image in gimp and crop it with a circular slection. To draw a circular selection, you need to select the Ellipse Select Tool and draw the ellipse with pressed shift button. Then, right click > Select > Invert and hit the delete button.

 [image: gimp_06-600x442]

 You are now free to design around your mirroring hemisphere after your fancy. Of course, you can approach your nadir logo on totally different ways. Maybe you even like to merge a handheld shot first, and than place a logo. I did that in a lot of panoramas. Here is where photographers will differ. Check the following examples to view all the different results: Starting with the untouched bottom cube side, then the clone stamped one, the merged one and finally one version with a logo made like mentioned above.

 [image: thumbs_kasse_tag_d][image: thumbs_kasse_tag_d2][image: thumbs_kasse_tag_d3][image: thumbs_kasse_tag_d4]

 5. SaladoConverter

 When you finish your bottom cube side, you are almost done. Open the SaladoConverter again and add all 6 sides by clicking on Add and selecting multiple files with shift or held down ctrl key. It is important that you keep the name structure intact, because SaladoPlayer won’t recognize the cube if one side has the suffix _d2 for example. This time, choose Cubic to Deep Zoom cubic from the drop-down menu in SaladoConverter and let it do the work. The result will be a folder structure that follows the Microsoft Deep Zoom specifications and that looks like that:

 [image: saladoconverter_02]

 The folders with the suffix from “b” to “u” now contain the six cube sides in different resolutions, that are additionally tiled like you know it from Google Maps for example. SaladoPlayer will thus be able to reload tiles only if needed and you can easily upload very high resolution pictures without killing your visitors bandwith. The .xml file with the suffix _f will be called from SaladoPlayer’s configuration to enter the panorama. I will get there in the third part of “Panoramic Photography Revealed”.

 Software that didn’t make it to the team, but is still worth mentioning

 My intention was clear right from the beginning: Describing a comprehensive workflow solely based on open source software. So far, I have not seen anybody doing that and I have to admit, it was quite a challenge. By that, I made high demands on the used software. There is a lot of free software out there, that didn’t make it to team simply for not being open source.

 So, here is a short list of tools that just didn’t meet my high requirements, but I consider to be worth mentioning.

 DevalVR Player

 The DevalVR Player is a standalone panorama viewer just as Panini. Those two tools are actually quite similar. Panini offers more functionality and works cross-platform, the DevalVR Player shows huge panoramas more fluently and is faster when opening big files. It is not easy to decide which program I prefer. I haven’t found a tool with a comparable speed as the DevalVR Player so far, so if you are using a Windows computer it’s simply the easiest and fastest way for that purpose. For me, it was clear Panini would be featured here, because all of the tools are now cross-platform and the described workflow can be reproduced on pretty much all systems. As I see it, there is very little chance DevalVR will be available for Mac or Linux soon, as it is not open source and the developer seems not to be willing to change that.

 In conclusion, still a very good piece of software, that is easy to use, available for free and thus a good deal for all Windows users.

 Here is a screenshot of the DevalVR Player showing the possibility to extract the same little planet view as I did with Panini. One difference should be mentioned though: Panini saves the current view in original resolution while the DevalVR Player just saves it in the resolution of the window, like doing a screenshot. If you like the little planet view, and your aim is to convert a equirectangular panorama to a little planet, Panini should be your choice.

 [image: devalvr_02-600x413]

 PTLens

 PTLens is a software invented by Tom Niemann that is able to correct lens distortions such as chromatic aberration, vignetting or barrel distortion. It started as freeware in 2002 and has developed impressively since. Today, it is one of the most advanced programs in that field, is available as Photoshop plugin and beats the mentioned adobe product in many ways. But, and that is an important “but”, it is now 25$.

 For what you get, this is certainly not much and it probably will go unnoticed if you work as a professional. Still, it couldn’t make it into the workflow that way. So here is a quick look at PTLens anyway:

 [image: ptlens_01-600x439]

 Conclusion part II

 As I have shown, a completely open source software (OSS) based workflow for creating perfect panoramas is possible. In the third part of this series, I will present the workflow that eventually leads to a high-level virtual tour, showing that it is even possible to rely on open source software from the moment the pictures were shot until online release. My hope is, that this series will push the open source idea within the panorama community and that others will contribute to the mentioned projects. Because that is why OSS is such a good idea: Opening your source code and letting others contribute can really speed up development, even without having a lot of money at hand. We all have seen it many times, we all use OSS every day. Right now, I write this article in WordPress that is opened in Firefox, both two very popular OSS projects. So, why not my panorama software?

 Part III: Creating Perfect Virtual Tours, The Open Source Way

 [image: gate__equi-600x300]

 If you followed my first two articles about panoramic photography, you now have seen how to build your own panohead and how to create panoramas with the pictures you have shot with it. This article will show you how to create a high quality virtual tour by connecting multiple panoramas together, adding background music and/or sound, setting hotspots, defining actions and so on. Because I am still going open source here, the central piece of software will be the SaladoPlayer, for which I will show the necessary configuration.

 Now this is very important: Even though there will be a lot of xml configuration to write, there are no programming skills needed whatsoever! Please try to follow this tutorial even if you have no experience in either programming or markup languages and please don’t be scared! I will try to start with very simple basics to make this tutorial comprehensible to everyone and walk you through any necessary step. You will be amazed what’s already possible with the SaladoPlayer and once you have your first tour running, the second will be a piece of cake!

 If you have programming skills please read this:

 I wrote this article to be as comprehensible as possible, even for those without any skills in programming language or without a good knowledge in computers in general. If you have experiences here, you will have to skip some parts and some will be too detailed for you. I am sorry for that, but I guess there is no other way. If you have good knowledge in xml, theSaladoPlayer wikiwill be all what you need.

 Basics

 First of all, I will give a quick overview how the SaladoPlayer is working. Before we start, you need the latest release of SP, at the moment, this is version 1.3. Go to www.panozona.com or directly to the git (https://github.com/mstandio/SaladoPlayer/downloads) and download a .zip file with the latest release. After unpacking, you will see a directory as follows:

 [image: saladoplayer_1]

 Now, what do we see here? At first, there is more stuff than you will need at the beginning, so let’s brake down the things you will need. There are five things every working SaladoPlayer necessarily needs:

 	The actual “Player”, in this case SaladoPlayer-1.3.swf

 	An html file where the SP will be embedded. Here: index.html

 	An xml configuration file, there are plenty in the folder examples

 	A folder with your panorama images, typically panoramas

 	The folder embed wich contains some javascript and a file called expressInstall.swf which performs an automatic update if a visitor tries to visit your panorama with an outdated version of Flash Player.

 The html file is the one your visitor will access with his or her browser, it’s not necessary to call it index, but I will just leave it that way. Within the html file, the SaladoPlayer-1.3.swf will be loaded and shown to the visitor. The SaladoPlayer itselfs loads the given xml file and thus loads all your config, which panoramas to load, how they are connected via hotspots, where the panoramas are located on a map and many more settings. Calling the .swf file in a browser will just give you an emply player, because the information where SP will find the xml config is stored in the html file. Calling the xml file won’t work either. So if you like to link to your panorama, you should always link to the html.

 Hello World! The first virtual panorama within 5 minutes.

 To have a fresh start, please create a new folder somewhere on your computer and name it whatever you like. I will go with testpano“. Copy the folder embed and the files index.html and SaladoPlayer-1.3.swf as well as any xml file you want from the examples into testpano. It really doesn’t matter wich one you choose, just take the first you find. Paste everything into your new created folder, in my case testpano and rename the xml file to something useful, in my case it’s testpano1.xml. Then, create a new folder in testpano and name it panoramas. When you are done, it should look like this:

 [image: saladoplayer_2]

 Before I go into detail about the configuration, we need a panorama. There are indeed panoramas included in the zip file you downloaded from github, but those are only colored checkers for showcasing some included modules and they are not really fun to “play” with. If you followed my previous tutorial, you should already have a panorama in a structure prepared for SP. If so, copy the main folder with the prefix dz_ into the folder panoramas. If you have an equirectangular image at hand, please visit part 2 of this series to see how to create such a structure with SaladoConverter. If you have no suitable image right now, you can download the example I am using here as zip file (2 MB): dz_testpano.zip

 Either way, I now have a folder panoramas/dz_testpano which contains one xml file testpano_f.xml and 6 folders testpano with suffixes _b,_d,_f,_l,_r and _u, everything created by SaladoConverter. This is now every file I need for my first panorama to be uploaded. Before we do that, there is a little bit of configuration necessary.

 Open the index.html in any editor you like. I work with Scintilla/SciTE but you can use pretty much every editor on the market (notepad++ is a very popular one). You should at least choose one that is able of syntax highlighting. To be clear: Neither the built-in editor of Microsoft Windows is a good idea, nor is the one of MAC OS.

 After opening the index.html, you should see this:

 	<html lang="en" xml:lang="en">

 	 <head>

 	 <title>SaladoPlayer v1.3</title>

 	 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

 	 <script type="text/javascript" src="embed/swfobject.js"></script>

 	 <script type="text/javascript">

 	 var flashvars = {};

 	 flashvars.xml = "examples/00_demo/01_demo.xml"

 	 var params = {};

 	 params.menu = "false";

 	 params.quality = "high";

 	 params.allowfullscreen = "true";

 	 swfobject.embedSWF("SaladoPlayer-1.3.swf", "SaladoPlayer", "100%", "100%", "10.1.0", "embed/expressInstall.swf", flashvars, params);

 	 </script>

 	 </head>

 	 <body bgcolor="#000000">

 	 <div id="SaladoPlayer">

 	

 	

 	

 	 </div>

 	 </body>

 	</html>

 For the moment, there are two important lines, 8 and 13. Line 8 is the position where the xml configuration file is loaded and line 13 is for SaladoPlayer. As line 8 points to an example config file that isn’t there, we should change the line and let it point to our xml file. I have my config file in the main folder, so I just need to set the name:

 	flashvars.xml = "testpano1.xml"

 My aim is to show you the fastest way to your first virtual panorama, so this is all for now, you can save and close the file.

 Next in line is the xml configuration. I open testpano1.xml and delete everything that is in there. Now, I write the shortest configuration possible, which is shown below. It basically does nothing else then telling the SaladoPlayer that there is one single panorama in the virtual tour and then delivers the location of the panorama in deepzoom structure:

 	<?xml version="1.0" encoding="utf-8" ?>

 	<SaladoPlayer>

 	 <global>

 	 <panoramas firstPanorama="testpano"/>

 	 </global>

 	 <panoramas>

 	 <panorama id="testpano" path="~panoramas/dz_testpano/testpano_f.xml"/>

 	 </panoramas>

 	</SaladoPlayer>

 You can copy this config, you just need to set panorama id="testpano" to an ID you like (or leave it that way) and then define the destination where your panorama can be found. If you created a folder panoramas like described before, the path to the xml file of the deepzoom structure will look like in the example: path="~panoramas/dz_yourpanoname/yourpanoname_f.xml". You have to call the ID of the panorama a few lines above that, in global. firstPanorama="yourpanoname". If you have done all this, your first virtual panorama config is ready.

 This are 9 lines of configuration, big projects sometimes need more than 1000 lines of code. This may sound scary, but it’s not really a big deal, because most of it is very similar and usually created through copy&paste [image: ;-)] . Once you have a good template, you just replace names and paths and there you go.

 Upload the whole folder to your website and visit the index.html. I did the same myself, here is what it looks like, a virtual 360°x180° panorama, created with open source software, presented with open source software:

 http://tilmanbremer.de/panorama/howto/testpano/index.html

 Hooray, the first pano is working! Now let’s get serious. Let’s learn SaladoPlayer

 So far we have our first virtual panorama up and running. In fact, I left out a lot of fundamental knowledge about SP just to make the first panorama be ready within minutes. There are some more basics necessary to understand the structure of SP and to make you able to create bigger and more sophisticated virtual tours soon. So let’s start over.

 XML

 If you do know what XML, HTML or a markup language is, please skip this step!

 Before we even start with more xml, here are some basics about it. XML is a markup language, like html is one. So, what is a markup language?

 With a programming language I create programs to run on various machines. A programming language gives instructions to a machine to do something, for example, to solve a mathematical problem or to print out text on a screen. In contrast, a markup language doesn’t give instruction to do anything. A markup language produces annotations, so that computer programs can understand and distiguish between text and annotation. For example: In html I write Word. This makes “Word” to be printed bold, like this: Word. Your browser understands the markup language html and thus won’t show the brackets (they are called tags in markup languages). They aren’t supposed to be shown, they are only annotations, especially set for your browser. Another html conform tag is <h2>Word</h2> which would make “Word” become a heading of level 2. Something like <AVeryBigHeading>Word</AVeryBigHeading> in contrast is not html conform and your browser wouldn’t understand it.

 Both in HTML and XML, there are start-tags and end-tags. Together, they form an element. End-tags contain the same word as the respective start-tag, but with a leading slash. For example: <Greeting>Hello World!</Greeting>.

 What you write for SaladoPlayer is very similar to a website in html, but we use xml here. You write your page of xml configuration but instead of a website, SaladoPlayer will read and transform the elements into a virtual tour. While html is a fairly strict set of valid tags, xml just defines some “rules” and it’s the SaladoPlayer who expects specific tags and elements, such as <global>,<panoramas> or <actions>. If you are searching for a specific element or attribute in html, you can search pretty much everywhere on the internet. If you are trying to do something wit SP and you don’t know which element or attribute you need, there is the SaladoPlayer-Wiki and the SaladoPlayer-Forum.

 Why is SaladoPlayer configured by an XML file? The SaladoPlayer and all its modules are able to understand a lot of input. That way, you just have to change one line of code and you have a very different virtual tour. Or you can write two differenz XML configs for the same set of panoramas and you have two very different tours without having to upload everything again. In fact, you only need the SaladoPlayer.swf once on your webserver and you can open as many panoramas with as many configs as you want with it. It’s simply very efficient.

 And there is more: When working with XML, you know exactly what you are doing, your input has direct influence on the tour. Also, you can copy configs from your old projects or from other users easily, share them and discuss creative ways to “get the max” out of SP with the elements and attributes available.

 You could think it would be better to have a graphical userinterface, and you might be right. There was something called SaladoConfigurator but the project is on hold right now. Maybe it will be revived somwhen in the future, if the community support for the SaladoPlayer gets good enough and somebody takes over the SaladoConfigurator project. For now, xml is a good way to set up our virtual tours and the limit is only set by your creativity.

 The structure

 It’s very important to understand the structure of SP, because once you do, it’s very easy to write sophisticated xml files and thus create amazing virtual tours.

 In the first example you saw a very minimal structure, with only the components that are essentially needed for the SaladoPlayer to work. I would like to get to that configuration again and extend it step by step.

 As the XML standard requires us to do, we start every config with one line that states the document type. Like so:

 	<?xml version="1.0" encoding="utf-8" ?>

 After that, we open and close <SaladoPlayer> tags. Later, all our code will be inside those tags:

 	<?xml version="1.0" encoding="utf-8" ?>

 	<SaladoPlayer>

 	</SaladoPlayer>

 There are four child elements to the <SaladoPlayer> element: <global>, <panoramas>, <modules> and <actions>:

 	global: Defines global settings, such as autorotation, what the first panorama of the tour is, how long transition effect lasts etc.

 	panoramas: Defines the locations of all panoramas and how they are connected between each other.

 	modules: Calls additional modules. Modules are used to include background music, lens flare, a map, buttons and so on. Here is a list of currently available modules.

 	actions: Actions are used to make transitions between panoramas possible, open and close context menus, start and stop music etc.

 You will definitely need all four child elements in a tour. For example, it’s very unusual to have no action definded, my minimal example from the beginning is a rare exception. So adding empty versions of all four elements is a good idea:

 	<?xml version="1.0" encoding="utf-8" ?>

 	<SaladoPlayer>

 	 <global>

 	 </global>

 	 <panoramas>

 	 </panoramas>

 	 <modules>

 	 </modules>

 	 <action>

 	 </actions>

 	</SaladoPlayer>

 The purpose of the four child elements of <SaladoPlayer> is mostly to provide a good structure. That is why they are not really used for configuration, but again have own child elements (a lot of them!) where most of the configuration happens. For example:

 As one child element of <global> we have <control>. <control> has a lot of attributes (see here) which we can, but needn’t to set. What we don’t set, stays with it’s default values, that’s a basic principle for everything in SaladoPlayer.

 I would like to disable autorotation in a virtual tour, so I need to set the value of autorotation to false. Autorotation is an attribute of control, so here is what I do:

 	<global>

 	 <control autorotation="enabled:false" />

 	</global>

 Notice, that there is only one <control> tag, but with the slash at the end. This is a short version of

 	<global>

 	 <control autorotation="enabled:false"></control>

 	</global>

 and it’s defined in XML as valid. It’s valid, because the <control> element is empty. Remember, when I write Word, there is something in between the tags, there is something in the element. A tag with a slash at the end is thus called an empty-element tag and is intented to be used in such situations to simplify the code. As we have a lot of empty elements in SP, you will find those abbreviations widely spread.

 As this is all you need to know to write your own XML file, I will now present some examples to help you understand the principle better.

 Adding Panoramas

 I will go with the example before, where I already disabled autoroation. I would like to add panoramas, this is obviously the most important thing to do.

 	<?xml version="1.0" encoding="utf-8" ?>

 	<SaladoPlayer>

 	 <global>

 	 <control autorotation="enabled:false" />

 	 </global>

 	 <panoramas>

 	 </panoramas>

 	 <modules>

 	 </modules>

 	 <action>

 	 </actions>

 	</SaladoPlayer>

 ssible by adding <panorama> as child element to the <panoramas> element. After a quick look into the SP wiki (http://panozona.com/wiki/SaladoPlayer:Configuration#panorama) I see, that has two mandatory attributes: ‘id’ and ‘path’. So this is what I do:

 	<?xml version="1.0" encoding="utf-8" ?>

 	<SaladoPlayer>

 	 <global>

 	 <control autorotation="enabled:false" />

 	 </global>

 	 <panoramas>

 	 <panorama id="pano1" path="~panoramas/dz_pano1/pano1_f.xml" />

 	 <panorama id="pano2" path="~panoramas/dz_pano2/pano2_f.xml" />

 	 <panorama id="pano3" path="~panoramas/dz_pano3/pano3_f.xml" />

 	 </panoramas>

 	 <modules>

 	 </modules>

 	 <action>

 	 </actions>

 	</SaladoPlayer>

 Adding panoramas doesn’t change much without calling them. This happens in the next step:

 Connecting Panorams via Hotspots

 If there is more than one panorama added to SaladoPlayer, we can connect them together via hotspots. Basically, hotspots are objects that perform actions when being clicked. There are a lot of actions that can be caused by a click onto a hotspot, e.g. playing a sound, showing text messages, jumping to a camera view, or like I am going to show it, switching to a different panorama.

 SaladoPlayer knows three different types of hotspots, SimpleHotspot, AdvancedHotspot and VideoHotspot. As you can guess, the last one is for embedding videos and the first two for more-or-less static graphic hotspots. To make it easy, I will choose the SimpleHotspot.

 First, search for the folder hotspots which is included in the SaladoPlayer archive you downloaded from github and upload it to the main directory of your panorama. We need this folder, because the respective swf-files SimpleHotspot-1.0.swf, AdvancedHotspot-1.0.swf and VideoHotspot-1.0.swf are located in there, besides some sample images we can use as hotspots.

 Now, I am going to place a hotspot in pano1 that points to pano2. Therefore, I need two things: One action that I will call jumpToPano2 and the hotspot in pano1 that triggers that action.

 I modify the currently empty actions element, by adding the action:

 	<action id="jumpToPano2" content="SaladoPlayer.loadPano(pano2)"/>

 Then, I insert the hotspot as childelement of pano1, which means, it will be visible in pano1:

 	<swf id="Pano1ToPano2" path="~hotspots/SimpleHotspot-1.0.swf" mouse="onClick:jumpToPano2">

 In total, we have this:

 	<?xml version="1.0" encoding="utf-8" ?>

 	<SaladoPlayer>

 	 <global>

 	 <control autorotation="enabled:false" />

 	 </global>

 	 <panoramas>

 	 <panorama id="pano1" path="~panoramas/dz_pano1/pano1_f.xml">

 	 <swf id="Pano1ToPano2" path="~hotspots/SimpleHotspot-1.0.swf" mouse="onClick:jumpToPano2"/>

 	 </panorama>

 	 <panorama id="pano2" path="~panoramas/dz_pano2/pano2_f.xml" />

 	 <panorama id="pano3" path="~panoramas/dz_pano3/pano3_f.xml" />

 	 </panoramas>

 	 <modules>

 	 </modules>

 	 <actions>

 	 <action id="jumpToPano2" content="SaladoPlayer.loadPano(pano2)"/>

 	 </actions>

 	</SaladoPlayer>

 Example.

 	

 	

As I said in the previous tutorial, it is important to choose short and representative names, for the image as well as for IDs. You will call and reuse the panorama id a lot of times, so it should be always something like diningroom or reception_day or even pano1 and not myfirsthalloweenpano_with_familyTest4(aerialpano).

 Now you added one hotspot into the first panorama. It’s obvious that we need at least another hotspot to get back to pano1. Therefore, you need another hotspot and another action. I will do that for all 3 panoramas, thus I need 4 hotspots to connect all panoramas together. To do so, I have to place the hotspots correctly (at the moment, they are just placed at standard position). For that, I use the location attribute of swf:

 	location="distance:0,pan:0,tilt:0"

 distance determines the distance of the hotspot image to the camera, so basically lets it appear bigger or smaller. pan determines the horizontal position of the hotspot in degress (-180 to 180) and tilt the vertical position, respectively, -90 to 90 degrees. Setting the values for all panoramas correctly brings me here:

 	<?xml version="1.0" encoding="utf-8" ?>

 	<SaladoPlayer>

 	 <global>

 	 <control autorotation="enabled:false" />

 	 </global>

 	 <panoramas>

 	 <panorama id="pano1" path="~panoramas/dz_pano1/pano1_f.xml">

 	 <swf id="Pano1ToPano2" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:0,tilt:-15" mouse="onClick:jumpToPano2"/>

 	 </panorama>

 	 <panorama id="pano2" path="~panoramas/dz_pano2/pano2_f.xml">

 	 <swf id="Pano2ToPano1" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:-127,tilt:-10" mouse="onClick:jumpToPano1"/>

 	 <swf id="Pano2ToPano3" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:70,tilt:-15" mouse="onClick:jumpToPano3"/>

 	 </panorama>

 	 <panorama id="pano3" path="~panoramas/dz_pano3/pano3_f.xml">

 	 <swf id="Pano3ToPano2" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:-40,tilt:-15" mouse="onClick:jumpToPano2"/>

 	 </panorama>

 	 </panoramas>

 	 <modules>

 	 </modules>

 	 <actions>

 	 <action id="jumpToPano1" content="SaladoPlayer.loadPano(pano1)"/>

 	 <action id="jumpToPano2" content="SaladoPlayer.loadPano(pano2)"/>

 	 <action id="jumpToPano3" content="SaladoPlayer.loadPano(pano3)"/>

 	 </actions>

 	</SaladoPlayer>

 Example.

 Now you may ask yourself how to get the necessary values for pan and tilt. You could find them by changing values by trial and error, but there is a better way, and that’s using the ViewFinder. ViewFinder is a module that is not made to be shown in a tour, but to help you while configuring yours. It’s the first module we will use, so check the next step to see how to use it.

 Adding Modules

 There are still empty modules tags in our config file, but we are about to change that. Modules play an important part in the SaladoPlayer’s configuration, because everything that exceeds SaladoPlayer’s basic functionality can be achieved by using modules. There is already a pretty long list of available modules and because SaladoPlayer is a community project, modules can be written by everyone. Latest example of a module from the community is LensFlare, a feature request that came from the community and that has been filled by the community.

 Example: ViewFinder

 I would like to start with the module ViewFinder. In the SaladoPlayer archive, there is a folder called modules. You can either upload the whole folder to your webserver or just create a folder with the same name in the main folder of your panorama and upload the file ViewFinder-1.3.swf you find in there. ViewFinder is one of the simplest modules you find, with only one mandatory attribute (path) and not much to configure in general. I call the module with a single line of code:

 	<ViewFinder path="~modules/ViewFinder-1.3.swf"/>

 Which you will find in the xml file as child element of modules:

 	<?xml version="1.0" encoding="utf-8" ?>

 	<SaladoPlayer>

 	 <global>

 	 <control autorotation="enabled:false" />

 	 </global>

 	 <panoramas>

 	 <panorama id="pano1" path="~panoramas/dz_pano1/pano1_f.xml">

 	 <swf id="Pano1ToPano2" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:0,tilt:-15" mouse="onClick:jumpToPano2"/>

 	 </panorama>

 	 <panorama id="pano2" path="~panoramas/dz_pano2/pano2_f.xml">

 	 <swf id="Pano2ToPano1" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:-127,tilt:-10" mouse="onClick:jumpToPano1"/>

 	 <swf id="Pano2ToPano3" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:70,tilt:-15" mouse="onClick:jumpToPano3"/>

 	 </panorama>

 	 <panorama id="pano3" path="~panoramas/dz_pano3/pano3_f.xml">

 	 <swf id="Pano3ToPano2" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:-40,tilt:-15" mouse="onClick:jumpToPano2"/>

 	 </panorama>

 	 </panoramas>

 	 <modules>

 	 <ViewFinder path="~modules/ViewFinder-1.3.swf"/>

 	 </modules>

 	 <actions>

 	 <action id="jumpToPano1" content="SaladoPlayer.loadPano(pano1)"/>

 	 <action id="jumpToPano2" content="SaladoPlayer.loadPano(pano2)"/>

 	 <action id="jumpToPano3" content="SaladoPlayer.loadPano(pano3)"/>

 	 </actions>

 	</SaladoPlayer>

 Example.

 Now you see the pan, tilt, and fov values in the top left corner, which is very convenient when creating virtual tours with a lot of hotspots. After setting all the values, the module should be obviously deactivated again, by simply deleting the line of code, or by commenting it out as follows:

 	<!-- <ViewFinder path="~modules/ViewFinder-1.3.swf"/> -->

 Adding modules works the same with all available modules, but most of them require more configuration than ViewFinder. In general, modules and actions come together. First, we define all necessary config for the module. Then, we define actions that are going to be performed on that module, which often results in the module to trigger another action itself. This might sound confusing, so here is another example:

 Example: BackgroundMusic

 I would like to add some background sounds to my panorama. This exceeds a basic functionality and thus is done by a module. BackgroundMusic-1.1.swf is included in the SaladoPlayer package, you find it in the folder modules. What I need besides the swf-file of the module, is a soundfile, which I copy in the newly created folder media/sounds/

 BackgroundMusic is a good example to show a more complex use of a module. The task: Every panorama should have it’s own background sound, which should automatically be played when entering the panorama. Also, there should be a hotspot for the sound to be toggled on/off.

 You can imagine the BackgroundMusic module as a CD-Player: It’s only capable of playing one CD at a time, but it has a built-in CD changer that is able to hold hundreds of CDs. In the beginning, you place all the CDs you need in the CD changer. Every time you enter a panorama, the CD has to be changed. You define all tracks within the module configuration and then use BackgroundMusic.setTrack() to “choose a CD” with it’s ID.

 First of all, I define the module BackgroundMusic in modules and define three different tracks with the IDs pano1, pano2, pano3:

 	<BackgroundMusic path="~modules/BackgroundMusic-1.1.swf">

 	 <tracks>

 	 <track id="pano1" path="~media/sounds/pano1_recorded_sounds.mp3"/>

 	 <track id="pano2" path="~media/sounds/pano2_recorded_sounds.mp3"/>

 	 <track id="pano3" path="~media/sounds/pano3_recorded_sounds.mp3"/>

 	 </tracks>

 	</BackgroundMusic>

 	

 	

 Then, I need actions. One is needed to toggle the music on/off, three are needed for changing the sound files:

 	<action id="toggleBackgroundMusic" content="BackgroundMusic.togglePlay()"/>

 	<action id="setTrackPano1" content="BackgroundMusic.setTrack(pano1)"/>

 	<action id="setTrackPano2" content="BackgroundMusic.setTrack(pano2)"/>

 	<action id="setTrackPano3" content="BackgroundMusic.setTrack(pano3)"/>

 	

 	

 So, the actions need to be performed when entering a panorama. This is done by adding the onEnter attribute to panorama, like in this example:

 	<panorama id="pano1" path="~panoramas/dz_pano1/pano1_f.xml" onEnter="setTrackPano1">

 Now we’re almost there. I wanted to have a hotspot to toggle the sound on and off. I would like to have some more settings, so I am using the AdvancedHotspot here:

 	<swf id="playMusic" path="~hotspots/AdvancedHotspot-1.0.swf" location="distance:1000,pan:-20,tilt:10" mouse="onClick:toggleBackgroundMusic">

 	 <settings path="~hotspots/images/soundspeaker.png" beat="false"/>

 	</swf>

 The complete configuration looks as follows, below the working example:

 	<?xml version="1.0" encoding="utf-8" ?>

 	<SaladoPlayer>

 	 <global>

 	 <control autorotation="enabled:false" />

 	 </global>

 	 <panoramas>

 	 <panorama id="pano1" path="~panoramas/dz_pano1/pano1_f.xml" onEnter="setTrackPano1">

 	 <swf id="Pano1ToPano2" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:0,tilt:-15" mouse="onClick:jumpToPano2"/>

 	 <swf id="playMusic" path="~hotspots/AdvancedHotspot-1.0.swf" location="distance:1000,pan:-20,tilt:10" mouse="onClick:toggleBackgroundMusic">

 	 <settings path="~hotspots/images/soundspeaker.png" beat="false"/>

 	 </swf>

 	 </panorama>

 	 <panorama id="pano2" path="~panoramas/dz_pano2/pano2_f.xml" onEnter="setTrackPano2">

 	 <swf id="Pano2ToPano1" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:-127,tilt:-10" mouse="onClick:jumpToPano1"/>

 	 <swf id="Pano2ToPano3" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:70,tilt:-15" mouse="onClick:jumpToPano3"/>

 	 </panorama>

 	 <panorama id="pano3" path="~panoramas/dz_pano3/pano3_f.xml" onEnter="setTrackPano3">

 	 <swf id="Pano3ToPano2" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:-40,tilt:-15" mouse="onClick:jumpToPano2"/>

 	 </panorama>

 	 </panoramas>

 	 <modules>

 	 <BackgroundMusic path="~modules/BackgroundMusic-1.1.swf">

 	 <tracks>

 	 <track id="pano1" path="~media/sounds/pano1_recorded_sounds.mp3"/>

 	 <track id="pano2" path="~media/sounds/pano2_recorded_sounds.mp3"/>

 	 <track id="pano3" path="~media/sounds/pano3_recorded_sounds.mp3"/>

 	 </tracks>

 	 </BackgroundMusic>

 	 </modules>

 	 <actions>

 	 <action id="jumpToPano1" content="SaladoPlayer.loadPano(pano1)"/>

 	 <action id="jumpToPano2" content="SaladoPlayer.loadPano(pano2)"/>

 	 <action id="jumpToPano3" content="SaladoPlayer.loadPano(pano3)"/>

 	

 	 <action id="toggleBackgroundMusic" content="BackgroundMusic.togglePlay()"/>

 	 <action id="setTrackPano1" content="BackgroundMusic.setTrack(pano1)"/>

 	 <action id="setTrackPano2" content="BackgroundMusic.setTrack(pano2)"/>

 	 <action id="setTrackPano3" content="BackgroundMusic.setTrack(pano3)"/>

 	

 	 </actions>

 	</SaladoPlayer>

 Example.

 Example: BackgroundMusic (Again)

 Earlier, I said that a module itself can trigger actions. This didn’t happen in the previous example, so I will extend it a little more to show you how this works, and what it can do for you.

 Let’s say, you want the soundspeaker icon to change when the sound is being toggled. This is an action, the module BackgroundMusic will trigger by itself.

 First of all, a hotspot can’t be disabled once it’s in the panorama, so this isn’t he right element to use. I will use another module instead: ImageButton. ImageButton lets us “stick” graphics to the visitor’s screen that follow the camera’s movement instead of staying at a specific position in the panorama, like the hotspot does. This also makes more sense here, because your visitors want to toggle music or background sound from everywhere in the tour.

 So, I define the ImageButton-module with two different buttons, an activeSoundButton and an inactiveSoundButton. Both buttons should appear in the upper left corner of the screen, 50px away from the left and top border. Both buttons trigger the same action, which is the same as in the previous example: toggleBackgroundMusic. As the sound should be play right from the start, the activeSoundButton should be visible right from the start, so the activeSoundButton gets the open="true" attribute:

 	<ImageButton path="~modules/ImageButton-1.3.swf">

 	 <button id="activeSoundButton" path="~hotspots/images/soundspeaker_enabled.png" action="toggleBackgroundMusic" >

 	 <window align="vertical:top,horizontal:left" move="horizontal:50,vertical:50" open="true"/>

 	 </button>

 	 <button id="inactiveSoundButton" path="~hotspots/images/soundspeaker_disabled.png" action="toggleBackgroundMusic" >

 	 <window align="vertical:top,horizontal:left" move="horizontal:50,vertical:50" open="false"/>

 	 </button>

 	</ImageButton>

 So far, so clear. Clicking on the icon should now toggle the sound. But I also want the icon to change depending on if the music is playing or not. That is, what the BackgroundMusic-module will do. At first, there are two new actions needed, one that shows the active button and hides the inactive one, and the other action vice versa:

 	<action id="showActiveSoundButton" content="ImageButton.setOpen(activeSoundButton,true);ImageButton.setOpen(inactiveSoundButton,false)"/>

 	<action id="showInactiveSoundButton" content="ImageButton.setOpen(activeSoundButton,false);ImageButton.setOpen(inactiveSoundButton,true)"/>

 As child-element of BackgroundMusic I add following line:

 	<settings play="true" onPlay="showActiveSoundButton" onStop="showInactiveSoundButton"/>

 play="true" will make the sounds play right from the start. What’s new here, is onPlay. This attribute contains an action that will be performed by the BackgroundMusic-module when it starts the music. Same with onStop. What we have now, is a circle: A click on a button triggers an action, the action activates a module, the module triggers another action which changes the button we clicked in the first place.

 The whole configuration looks like follows:

 	<?xml version="1.0" encoding="utf-8" ?>

 	<SaladoPlayer>

 	 <global>

 	 <control autorotation="enabled:false" />

 	 </global>

 	 <panoramas>

 	 <panorama id="pano1" path="~panoramas/dz_pano1/pano1_f.xml" onEnter="setTrackPano1">

 	 <swf id="Pano1ToPano2" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:0,tilt:-15" mouse="onClick:jumpToPano2"/>

 	 </panorama>

 	 <panorama id="pano2" path="~panoramas/dz_pano2/pano2_f.xml" onEnter="setTrackPano2">

 	 <swf id="Pano2ToPano1" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:-127,tilt:-10" mouse="onClick:jumpToPano1"/>

 	 <swf id="Pano2ToPano3" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:70,tilt:-15" mouse="onClick:jumpToPano3"/>

 	 </panorama>

 	 <panorama id="pano3" path="~panoramas/dz_pano3/pano3_f.xml" onEnter="setTrackPano3">

 	 <swf id="Pano3ToPano2" path="~hotspots/SimpleHotspot-1.0.swf" location="distance:500,pan:-40,tilt:-15" mouse="onClick:jumpToPano2"/>

 	 </panorama>

 	 </panoramas>

 	 <modules>

 	 <BackgroundMusic path="~modules/BackgroundMusic-1.1.swf">

 	 <settings play="true" onPlay="showActiveSoundButton" onStop="showInactiveSoundButton"/>

 	 <tracks>

 	 <track id="pano1" path="~media/sounds/pano1_recorded_sounds.mp3"/>

 	 <track id="pano2" path="~media/sounds/pano2_recorded_sounds.mp3"/>

 	 <track id="pano3" path="~media/sounds/pano3_recorded_sounds.mp3"/>

 	 </tracks>

 	 </BackgroundMusic>

 	 <ImageButton path="~modules/ImageButton-1.3.swf">

 	 <button id="activeSoundButton" path="~hotspots/images/soundspeaker_enabled.png" action="toggleBackgroundMusic" >

 	 <window align="vertical:top,horizontal:left" move="horizontal:50,vertical:50" open="true"/>

 	 </button>

 	 <button id="inactiveSoundButton" path="~hotspots/images/soundspeaker_disabled.png" action="toggleBackgroundMusic" >

 	 <window align="vertical:top,horizontal:left" move="horizontal:50,vertical:50" open="false"/>

 	 </button>

 	 </ImageButton>

 	 </modules>

 	 <actions>

 	 <action id="jumpToPano1" content="SaladoPlayer.loadPano(pano1)"/>

 	 <action id="jumpToPano2" content="SaladoPlayer.loadPano(pano2)"/>

 	 <action id="jumpToPano3" content="SaladoPlayer.loadPano(pano3)"/>

 	

 	 <action id="toggleBackgroundMusic" content="BackgroundMusic.togglePlay()"/>

 	 <action id="setTrackPano1" content="BackgroundMusic.setTrack(pano1)"/>

 	 <action id="setTrackPano2" content="BackgroundMusic.setTrack(pano2)"/>

 	 <action id="setTrackPano3" content="BackgroundMusic.setTrack(pano3)"/>

 	

 	 <action id="showActiveSoundButton" content="ImageButton.setOpen(activeSoundButton,true);ImageButton.setOpen(inactiveSoundButton,false)"/>

 	 <action id="showInactiveSoundButton" content="ImageButton.setOpen(inactiveSoundButton,true);ImageButton.setOpen(activeSoundButton,false)"/>

 	 </actions>

 	</SaladoPlayer>

 Example.

 What I did here is a good way of creating complex combinations of actions and modules that can result in very dynamic, interactive virtual tours. The use of modules and actions should now be quite clear, which pretty much concludes my tutorial about SaladoPlayer at this point. Now it’s on you to explore the possibilites of SaladoPlayer. Use the examples on this site as a starting point and expand them to your taste. When you download SaladoPlayer, look in the examples folder to see examples for everything that comes with it: modules, triggers, functions… and share your experience in the SaladoPlayer forum to make the software become even better!

 Credits

 Thanks to Marek Standio for maintaining the SaladoPlayer and for the great help in the SaladoPlayer forum!

 All other drawings, pictures and texts are licenced under the creative commons license by-nc.

 If you liked this article, please show your appreciation by sharing it! I am also glad about a click on the flattr button, or a small paypal donation that is possible via the button in the sidebar on the left.http://www.tilmanbremer.de

 Part IV: Appendix / Frequently Asked Questions

 Why do I get an error when opening my virtual tour from my local computer instead of a webserver?

 This is a very frequent problem and it’s caused by the Flash Player’s security settings. It is in fact possible to set the Flash Player to display panoramas on your local computer, and it’s very easy, too. Here is what you do:

 	Open the html file of your virtual tour with your favorite browser. In most cases, this is simply done by double-clicking on it. You will certainly see a black screen, maybe with an error message like security error.

 	Right click on the screen and select Global Setting....

 	Chose the tab Advanced

 	Scroll down a bit and click on the button Trusted Location Settings...

 	Click on Add... and then Add Folder... and add the folder where you store all your panoramas and/or virtual tours.

 	Close the windows and hit the Refresh button of your browser. You should now see a working SaladoPlayer.

 It’s very helpful to do so, especially when developing large virtual tours, so you won’t have to upload every time you change something. Credits go to Soltkemecsei in the SaladoPlayer forum for pointing out this little trick.

 I made a short clip to show you how it’s done. Please excuse for the German menu items, I didn’t know how to set the language to English and I am not even sure if it’s possible:

 Youtube

 The SaladoPlayer doesn’t fill the browser window completely, there is always a small black border visible. Is it possible to get rid of this border?

 If you configure the SaladoPlayer as described in my tutorial, and you open it in your browser, you will see a small black border all around the SP. In fullscreen mode, it’s not a big deal, but it can get annoying, e.g. if you like to embed the panorama with an iframe. In the second part of my tutorial, you can see how big the black border can appear if the iframe is as little as 600px wide.

 [image: saladoplayer_black_border]

 If you like the SaladoPlayer to fill the browser window without the border, you need a small javascript tool called swffit. Download the .js here and place it in the folder embed, then open your index.html and do the following adjustments:

 Find the line

 	

 1

 	

 <script type="text/javascript" src="embed/swfobject.js"></script>

 and add another line right there:

 	

 1

 	

 <script type="text/javascript" src="embed/swffit.js"></script>

 Your header should now look something like this:

 	

 1

 2

 3

 4

 5

 6

 7

 	

 ...

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

 <script type="text/javascript" src="embed/swfobject.js"></script>

 <script type="text/javascript" src="embed/swffit.js"></script>

 <script type="text/javascript">

 var flashvars = {};

 ...

 After that, there are a few lines of parameters, where at the end, there is the line that calls the SaladoPlayer:

 	

 1

 	

 swfobject.embedSWF("SaladoPlayer-1.3.3.swf", "SaladoPlayer", "100%", "100%", "10.1.0", "embed/expressInstall.swf", flashvars, params);

 add following line of code right under that line, but still above the </script> tag:

 	

 1

 	

 swffit.fit("SaladoPlayer");

 Your index.html all in all should look like so:

 	

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 	

 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <title>Your title goes here</title>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

 <script type="text/javascript" src="embed/swfobject.js"></script>

 <script type="text/javascript" src="embed/swffit.js"></script>

 <script type="text/javascript">

 var flashvars = {};

 flashvars.xml = "yourxmlfile.xml"

 var params = {};

 params.menu = "false";

 params.quality = "high";

 params.allowfullscreen = "true";

 swfobject.embedSWF("SaladoPlayer-1.3.swf", "SaladoPlayer", "100%", "100%", "10.1.0", "embed/expressInstall.swf", flashvars, params);

 swffit.fit("SaladoPlayer");

 </script>

 </head>

 <body bgcolor="#000000">

 <div id="SaladoPlayer">

 </div>

 </body>

 </html>

 The black border is gone:

 [image: saladoplayer_without_black_border]

 How do I use SaladoPlayer in combination with PanoPress?

 I answered this question in another post: SaladoPlayer and Panopress

